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Phonon localization and thermal rectification in asymmetric harmonic chains using a
nonequilibrium Green’s function formalism
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Thermal transport across one-dimensional atomic chains is studied using a harmonic nonequilibrium Green’s
function formalism in the ballistic phonon transport regime. Introducing a mass impurity in the chain and mass
loading in the thermal contacts leads to interference of phonon waves, which can be manipulated by varying
the magnitude of the loading. This shows that thermal rectification is tunable in a completely harmonic system.
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Atomistic control in nanostructures has enabled key stud-
ies of thermal transport that have demonstrated the potential
for phonon control and manipulation in thermal devices.
The recent experimental realization! of a thermal rectifier
mass graded nanotube has been accompanied by several
studies in anharmonic one-dimensional (1D) atomic chains
in an attempt to understand the origin>* and extent of
applicability>® of thermal rectification (i.e., asymmetric heat
conduction where heat flows “easier” in one direction than it
does in the opposite direction). Recent work examining ther-
mal transport in harmonic chains in the diffuse thermal re-
gime did not exhibit thermal rectification.” In this Rapid
Communication, we examine thermal transport in asymmet-
ric harmonic chains in the ballistic phonon transport regime
with a nonequilibrium Green’s function (NEGF) formalism
and demonstrate evidence of thermal rectification from
phonon-scattering events stemming from phonon wave inter-
ference that parallels photon interference in an asymmetric
Fabry-Pérot interferometer. We attribute the rectification ob-
served in the asymmetric harmonic chains to localized
modes that are unable to propagate the length of the chain
before escaping to into the thermal reservoirs, similar to the
gradons discussed in by Xiao et al.®

Our model of the 1D harmonic chain, based on the NEGF
formalism® for phonons,'%'# is separated into three regions,
as shown in Fig. 1(a). The left and right contact regions,
treated as semi-infinite, impose boundary conditions on the
N-atom channel region, in which the thermal transport is
studied. The left and right contacts impose inflow and out-
flow in the channel, 3;, and X, which are the self energies
of the left or right contacts,” depending on the direction of
the thermal current, and are related to the harmonic transport
in the contacts and the connection at the channel-contact in-
terface. The harmonic spring constants, K; in the channel, are
related to the harmonic forces between the masses, M;, in the
channel. The Green’s function of the channel is given by’
G=[Mw*-K-3,,-3,,]"" where M is a diagonal matrix of
the masses in the channel, w is the phonon angular fre-
quency, and K is a tridiagonal matrix of spring constants,
where the main diagonal represents the restoring force of the
atom in position i and the two off-diagonal terms represent
the forces from the atoms in position i—1 and i+1 acting on
atom in position i. The left and right contacts cause energy-
level broadening at the contact-channel interface described

by Tivou=i[Zinou—21you- Given the Green’s function of
the channel and the level broadening due to the contacts, the
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thermal transmission across the 1D channel is given by’ 7
=Trace[[;,GT,,G'].
The Hamiltonian of the 1D harmonic chain in this work is
given by
1 .~ 1.~
H=—i Mii,+ —ii' Kii. (1)
2 2
where i is a matrix describing the displacements of the at-
oms in the channel and #, is the time derivative of the dis-
placement matrix. As described by Zhang et al.,' for a har-
monic Hamiltonian in the form of Eq. (1) the thermal
conductance through the atomic chain is given by
i[9 of

=— wT——dw (2)
2m)y aT

where T is the temperature of the channel, f is the Bose-
Einstein distribution function, and 7 is the thermal transmis-
sion coefficient across the channel, as previously mentioned.
The thermal conductance in this Green’s function approach
is derived from the Landauer formalism, and is derived in
detail in the references.”!%1315 The temperature dependency
of Eq. (2) comes from the Landauer approach!® where each
semi-infinite contact is prescribed a different temperature
causing a net flux between the contacts; the temperature de-
pendencies of phonon populations in the contacts gives rise

Left contact (LC)
1D semi-infinite

Right contact (RC)
1D semi-infinite

Left contact (LC) Ka
1D semi-infinite

Right contact (RC)
1D semi-infinite

FIG. 1. (Color online) Schematic of (a) atomic chain with im-
portant regions identified for NEGF development and (b) atomic
chain with mass loading in right contact. We refer to a contact that
is more than a single atomic chain as a “mass-loaded contact,” such
as the right contact depicted in (b).
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FIG. 2. (Color online) Thermal conductance of a homogeneous
10 atom channel under various (a) asymmetric and (b) symmetric
mass loadings of the contacts. The conductance of a homogeneous
Si chain (no mass loading in the contacts) is shown in (a) for com-
parison. In all cases shown in (a) and (b), no rectification is ob-
served even when there is asymmetric mass loading of the contacts.

to a net flux across the channel. The thermal conductance,
Eq. (2), is evaluated in the limit of an infinitesimally small
temperature difference. Evaluation of Eq. (2) for the various
atomic chains of interest requires knowledge of the mass at
each point in the atomic chain and the spring constants be-
tween each mass. The masses at each point are taken as some
multiple of the atomic mass of Si, M=4.7X 1072 kg. The
spring constants are calculated from the second derivative of
the harmonic Harrison potential,17 which, for a 1D chain, is
given by K=3ac;,/16, where a and c¢;; are the interatomic
spacing and elastic constant for Si, taken as 0.543 nm and
16.57 %X 10'° N m~2, respectively, giving K=16.87 N m™".
For this harmonic chain, the maximum frequency of vibra-
tion is wc=2\s’m. With M and K of the left and right con-
tacts, the self-energies of each of the contacts can be calcu-
lated by
2in/oul == Kin/out exp[Zl Sin_l(ﬁ)] (3)
where K, o 1S the spring constant at the channel-contact
interface. This form of the self energy is derived in detail for
phonons propagating in a atomic chain by Hopkins et al.'®
Figure 2(a) shows the thermal conductance for a Si chain,
assuming the contacts and channels are all Si atoms with
mass M and spring constant K. The spring constants at the
channel-contact interface are also K since the channel and
contacts are all single Si atoms. Figure 2(a) also shows the
conductance for a 10 atom chain where the geometry of the
left contact and channel are single Si atoms and the right
contact is twice as massive. This geometry, shown in Fig.
1(b), is simulated as a chain that has a mass-loaded thermal
contact with two masses on the right contact [we refer to a
contact that is more than a single atomic chain as a “mass-
loaded contact,” such as the right contact depicted in Fig.
1(b)]. The two masses are treated as independent and are not
coupled by any transverse forces, such that the mass at the
right contact is 2M and the springs joining it to the channel
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FIG. 3. (Color online) Channel thermal transmissions for the
thermal conductance calculations shown in Fig. 2. With symmetric
mass loading, the transmission spectra exhibits Fabry-Pérot-like os-
cillations resulting from interference of the phonon waves that are
reflecting off the contact-channel interfaces.

are in parallel with an effective spring constant of 2K. This
scenario is denoted as 2RC. To simulate a reversal of the
thermal current for such asymmetric chains, the contacts are
simply reversed. Therefore, 2LC in Fig. 2(a) simulates a left
contact with two times mass-loaded properties and a channel
and right contact with single mass properties.

The asymmetry in the masses of the contacts leads to a
phonon distribution near one contact that is different than the
phonon distribution near the other contact. By switching the
contacts in the mass asymmetric cases, we simulate switch-
ing the thermal current. Considering rectification as a differ-
ence in the thermal conductance of the channel that depends
on the direction of the thermal current,!® it becomes clear
from Fig. 2(a) that these mass-loaded contacts do not pro-
duce rectification in the 10 atom harmonic chains. For com-
parison, the same cases for SLC, SRC, 10LC, and 10RC
were calculated and shown in Fig. 2(a). No rectification is
observed in any of the cases shown in Fig. 2(a) of their
corresponding thermal transmission spectra, shown in Fig.
3(a); the transmission for the nonmass-loaded homogeneous
Si chain is unity (not shown). This is expected, as with a
homogeneous chain, both the left and right mass-loaded con-
tact cases result in otherwise identical systems.

Figure 2(b) shows the same scenarios in Fig. 2(a), for the
symmetric chain cases where both contacts are loaded with
the same mass, i.e., 2LC and 2RC, 5LC and 5RC, and 10LC
and 10RC. The thermal transmission spectra for the ten-atom
chain scenarios are shown in Fig. 3(b) and exhibit Fabry-
Pérot-like oscillations resulting from interference of the pho-
non waves that are reflecting off the contact-channel inter-
faces. These oscillations are not observed in the asymmetric
mass-loaded cases since one of the contact-channel inter-
faces is a homogeneous contact and therefore back reflection
of the phonon waves was not present at that interface.

By manipulating and localizing the Fabry-Pérot phonon
oscillations, thermal rectification can be controlled. This can
be accomplished by considering the contact mass-loading
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FIG. 4. (Color online) Thermal conductance of a 10 atom chan-
nel containing an impurity of mass 2M at position 8 under various
(a) asymmetric and (b) symmetric mass loadings of the contacts. In
the case of asymmetric mass loading of the contacts, the impurity
causes asymmetric thermal conductance, creating thermal rectifica-
tion greater than 10%. Symmetric mass loading of the contacts does
not create a directional dependent thermal conductance.

cases discussed previously now with an impurity introduced
to make the channel region inhomogeneous. In this case, we
consider a ten-atom channel with an impurity of mass 2M
introduced as the eighth atom from the left contact (third
atom from the right contact) in the same bonding configura-
tion as shown between the channel and right contact in Fig.
1(b). In this geometry, reversal of the thermal current is ac-
complished by leaving the mass impurity at position 8 and
switching the contacts.

Figure 4 shows the thermal conductances for an inhomo-
geneous 10 atom chain for the various contact mass-loading
scenarios discussed in Fig. 2. Figure 4(a) shows thermal con-
ductance calculations when only one of the contacts is mass
loaded and Fig. 4(b) shows the thermal conductance when
both contacts are mass loaded. Unlike the previous cases,
introduction of the impurity as the eighth atom in the ten-
atom chain leads to an asymmetric thermal conductance. Re-
versing the contacts and channel about the midpoint of the
channel (i.e., switching the contacts and moving the mass
impurity from position 8 to position 3) or using symmetri-
cally mass-loaded contacts, leads to no evidence of rectifica-
tion which indicates conservation of the second law. This
shows that thermal current is equal in each direction for a
given thermal bias, but, when the bias is reversed, the ther-
mal current changes (but is still equal in each direction). This
is the definition of thermal rectification.'® Note in Fig. 4(a)
that a larger asymmetry in the mass loading does not corre-
spond to a greater rectification. For example, the largest rec-
tification is observed when the asymmetric mass-loading ra-
tio is 5 (that is, one contact is five times “heavier” than the
other) indicating that there is some critical parameter related
to the asymmetric mass loading and the mass of the impurity
(i.e., the asymmetry in the channel).

This phenomenon is explained by examining the thermal
transmission through the channels for each of these cases, as
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FIG. 5. (Color online) Channel thermal transmissions for the
thermal conductance calculations shown in Fig. 4. Broadening of
the oscillations between the impurity and the mass-loaded contact
when the mass-loaded contact is on the right (solid lines) causes the
thermal conductance to be greater than when the mass-enhanced
contact is at the left (dashed lines). Note that the transmission spec-
tra is not directionally dependent when the contacts are symmetri-
cally mass loaded even when the channel is asymmetric (b).

shown in Fig. 5. Figure 5(a) compares the thermal transmis-
sion spectra for the cases in Fig. 4(a). When the impurity is
far from the mass-loaded contact (i.e., when the mass-loaded
contact is on the left), sharp Fabry-Pérot-type oscillations are
observed (dashed lines). The waves launched into the chan-
nel from the mass-loaded contact on the left experience mul-
tiple reflections in the channel between the left contact and
the impurity atom. This causes significant destructive inter-
ference leaving only very sharp, narrow Fabry-Pérot peaks.
However, in the case when the impurity is close to the mass-
loaded contact (i.e., when the mass-loaded contact is on the
right), the waves launched from the left (nonmass-loaded
contact) do not experience multiple reflections between the
impurity and the left contact-channel interface since the left
contact and channel are the same material (solid lines). This
reduces the amount of destructive interference of the right-
traveling in-flow leading to broadening of the multiple re-
flections between the atom 8 impurity and the right mass-
loaded contact. Even though the multiple reflections between
atom 8 and the right mass-loaded contact are less than those
between atom 8 and the left mass-loaded contact, the broad-
ening increases the transmission to enhance thermal conduc-
tance. These localized vibrations that are affected by Fabry-
Pérot-like phonon interference between two mass-enhanced
regions of a 1D chain are similar to gradons,® and can be
used to control phonon thermal conductance. The differences
seen in Fig. 4(a) among the different mass loading of the
contacts suggest that there is also a dependency between the
mass loading of the contacts, and the mass enhancement at
the impurity site. Figure 5(b) compares the thermal transmis-
sion spectra for the cases in Fig. 4(b). Note that the trans-
mission spectra are not directionally dependent which means
there is no thermal rectification. Fabry-Pérot phonon oscilla-
tions are still observed in the channel due to the impurity
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atom in the channel, but the symmetry of the masses in the
contacts means that asymmetric heat conduction is not pos-
sible.

As observed in Figs. 4 and 5, the key to thermal rectifi-
cation during harmonic, ballistic phonon transport is asym-
metric mass loading in the contacts and some nonsymmetric
phonon scattering event (i.e., the channel “impurity” atom).
The asymmetric mass-loaded contacts in our study cause the
contacts to have different self energies, meaning that the im-
posed wave interacts differently with each contact. This is
similar to the conclusion reached recently examining thermal
rectification in structures with geometrically asymmetric
phonon-scattering sites, where the condition for rectification
is that the phonon baths driving conductance must be at dif-
ferent temperatures and perturbed from equilibrium.'> How-
ever, this study treats the phonons as particles and the scat-
tering sites scatter the phonon particles classically leading to
phonon rectification that is only realized when there is a
substantial temperature gradient. We show that a large tem-
perature gradient is not necessary for rectification of phonon
conductance if phonon transport is in the wave regime. This
is applicable in low dimensional nanostructure applications
when characteristic lengths are less than the phonon mean-
free paths.

Further insight into the origin of thermal rectification dur-
ing harmonic, ballistic phonon transport is gathered by ex-
amining the rectification as a function of impurity position.
Figure 6 shows the thermal rectification percentage, which
here is defined as |Ngeze—Nicrel/Ncre Where the sub-
scripts represent which contact is mass loaded, as a function
of impurity position at 300 K for the cases described in Fig.
4(a). There are two main features of the trends in Fig. 6 that
are important for rectification. First off, the length of the
“Fabry-Pérot phonon cavity” drastically affects the rectifica-
tion. Secondly, the degree of mass loading has a complex
relationship on the rectification, where the rectification is ex-
tremely sensitive to impurity position with a large asymme-
try in the mass loading with the sensitivity decreasing as the
mass loading becomes more symmetric.

In summary, phonon thermal conductance in harmonic
chains is studied with a nonequilibrium Green’s function for-
malism. In atomic chains with different contacts, introducing

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 80, 201408(R) (2009)

Impurity position from right mass loaded contact
0 7 6

1 5 4 3 2 1
80 L) ‘ T T T T T T L T

60 —&— Mass loading =2

- @ - Mass loading = 5
35 --A- - Mass loading = 10

40}

20

Rectification percentage (%)
>

1 2 3 4 5 6 7 8 9 10
Impurity position from left mass loaded contact
FIG. 6. (Color online) Thermal rectification percentage as a
function of impurity position at 300 K for the cases described in
Fig. 4. The length of the “Fabry-Pérot phonon cavity” drastically
affects the rectification and the rectification percentage is extremely
sensitive to impurity position.

a mass impurity in the atomic chain causes asymmetric ther-
mal transport creating thermal rectification assuming purely
harmonic, ballistic transport. This is due to phonon wave
interference similar to Fabry-Pérot interference. This type of
phonon wave and thermal transport control gives a straight
forward way to design thermal switches, amplifiers, and ther-
mal memory devices>® through controlled impurity growth
creating multiple reflections between the impurity and the
thermal source or sink, effectively creating Fabry-Pérot pho-
non interference filters.
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